Constitutive modelling of arteries considering fibre recruitment and three-dimensional fibre distribution.

نویسندگان

  • Hannah Weisbecker
  • Michael J Unterberger
  • Gerhard A Holzapfel
چکیده

Structurally motivated material models may provide increased insights into the underlying mechanics and physics of arteries under physiological loading conditions. We propose a multiscale model for arterial tissue capturing three different scales (i) a single collagen fibre; (ii) bundle of collagen fibres; and (iii) collagen network within the tissue. The waviness of collagen fibres is introduced by a probability density function for the recruitment stretch at which the fibre starts to bear load. The three-dimensional distribution of the collagen fibres is described by an orientation distribution function using the bivariate von Mises distribution, and fitted to experimental data. The strain energy for the tissue is decomposed additively into a part related to the matrix material and a part for the collagen fibres. Volume fractions account for the matrix/fibre constituents. The proposed model only uses two parameters namely a shear modulus of the matrix material and a (stiffness) parameter related to a single collagen fibre. A fit of the multiscale model to representative experimental data obtained from the individual layers of a human thoracic aorta shows that the proposed model is able to adequately capture the nonlinear and anisotropic behaviour of the aortic layers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative assessment of collagen fibre orientations from two-dimensional images of soft biological tissues.

In this work, we outline an automated method for the extraction and quantification of material parameters characterizing collagen fibre orientations from two-dimensional images. Morphological collagen data among different length scales were obtained by combining the established methods of Fourier power spectrum analysis, wedge filtering and progressive regions of interest splitting. Our propose...

متن کامل

Rayleigh Wave in an Incompressible Fibre-Reinforced Elastic Solid Half-Space

In this paper, the equation of motion for an incompressible transversely isotropic fibre-reinforced elastic solid is derived in terms of a scalar function.   The general solution of the equation of motion is obtained, which satisfies the required radiation condition.  The appropriate traction free boundary conditions are also satisfied by the solution to obtain the required secular equation for...

متن کامل

Flexural and Impact Properties of Stainless Steel based Glass Fibre Reinforced Fibre Metal Laminate under Hygrothermal Conditioning

Fibre metal laminates (FMLs) have appeared as the most suitable materials for shipbuilding, aeronautical and aerospace applications due to their superior mechanical properties over traditional materials. In this paper, degradation in flexural and impact properties of glass fibre/epoxy composite (GF/E composite) and stainless steel glass fibre/epoxy fibre metal laminate (SS FML) due to hygrother...

متن کامل

An automated approach for three-dimensional quantification of fibrillar structures in optically cleared soft biological tissues.

We present a novel approach allowing for a simple, fast and automated morphological analysis of three-dimensional image stacks (z-stacks) featuring fibrillar structures from optically cleared soft biological tissues. Five non-atherosclerotic tissue samples from human abdominal aortas were used to outline the multi-purpose methodology, applicable to various tissue types. It yields a three-dimens...

متن کامل

Investigation of the optimal collagen fibre orientation in human iliac arteries

The distribution of collagen fibres plays a significant role in the mechanical behaviour of artery walls. Experimental data show that in most artery wall layers there are two (or more) in-plane symmetrically disposed families of fibres. However, a recent investigation revealed that some artery wall layers have only one preferred fibre direction, notably in the medial layer of human common iliac...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the Royal Society, Interface

دوره 12 105  شماره 

صفحات  -

تاریخ انتشار 2015